The Student Outcomes of the BS in CS Program

The department has established student outcomes so that upon graduation, students with a degree in the undergraduate Computer Science program at NYIT will demonstrate an ability to:

- a. Apply knowledge of computing and mathematics appropriate to the discipline.
- b. Analyze a problem and identify and define the computing requirements appropriate to its solution.
- c. Design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.
- d. Function effectively on teams to accomplish a common goal.
- e. Understand professional, ethical, legal, security, and social issues and responsibilities.
- f. Communicate effectively with a range of audiences.
- g. Analyze the local and global impacts of computing on individuals, organizations, and society.
- h. Engage in and recognize the need for continuing professional development.
- i. Use current techniques, skills, and tools necessary for computing practice.
- j. Apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices.
- k. Apply design and development principles in the construction of software systems of varying complexity.

In order to ensure that students achieve student outcomes a-k, the faculty has built the curriculum such that key concepts are introduced, developed, and reinforced throughout a students' time in the program. Table 4.A.1 below shows the relationship between courses in the program and Student Outcomes (a - k).

Relationship between CS Program Courses and Student Outcomes

ETCS/CSCI	a	b	С	d	e	f	g	h	i	j	k
105					X			X			
108					X	X	X				
125			X			X			X		X
155	X		X						X	X	
185			X			X			X		X
235	X								X		
260	X		X			X					
270	X										
312	X	X									
318	X		X						X		
300	X	X		X	X	X					
330	X	X							X		
335	X	X							X		
354*					X	X					
355*	X	X	X			X			X	X	
345				X					X		
380			X	X		X			X	X	X
385*		X	X		X				X		
405*	X		X						X		
415*	X	X	X						X		
440*		X	X								
445*			X						X		

455	X	X	X	X	X	X	X	X	X	X	X
IENG 400					X	X	X				