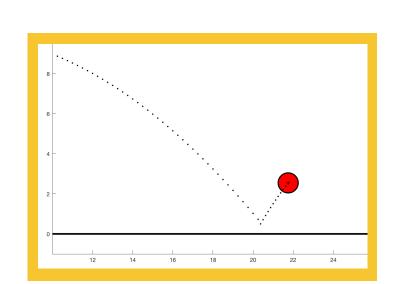
ADAPTIVE TIME-STEPPING FOR GRANULAR MEDIA SIMULATION

Samantha Rivera, Dr.Eduardo Corona

INTRODUCTION


WHY GRANULAR MEDIA?

- Second most handled material in the global industry
- Applications in engineering, physics, computer graphics, video games, etc

COMPUTATIONAL CHALLENGES

- Must focus on interactions between individual collisions and particle interactions
- Modeling relies on principles from solid mechanics, fluid dynamics, and statistical physics
- Position of particle is continuous; however it is not differentiable

OBJECTIVES

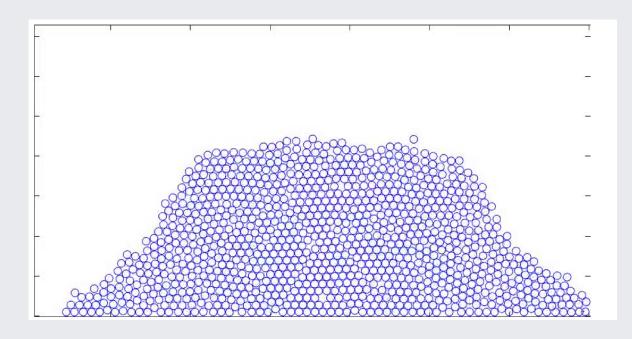
VERSATILE, HIGH-FIDELITY COLLISION SIMULATOR WITH USER INPUTS

• Number of particles, Mass, Diameter, Restitution, Tolerance, Solver

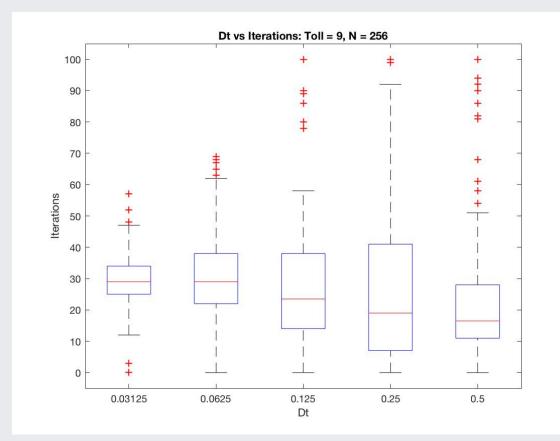
HEURISTIC ADAPTIVE TIME STEPPING METHOD

- Since particle interactions are non-smooth, standard adaptive time-stepping methods are not useful
- Must use alternative error estimate while assuring rigid particles do not deform nor penetrate one another

APPROACH


- Information from the particles starting position and velocity is used to advance the simulation over a specified period of time using various time steps(dt)
- Two issues must be solved when developing an adaptive method for this non-smooth case; the lack of error estimates and the issues created by aspects of the collision
- The number of iterations correlates to how much the optimization method "struggles" to solve the problem
- The iteration value will serve as our "error estimate" and determine if dt must be increased, decreased, or left as is while assuring no particle overlap or passing through

NEW YORK INSTITUTE OF TECHNOLOGY


Reinvent the Future.

 This will allow us to investigate how optimization solvers work under various conditions

RESULTS

Collision Generator: N= 1024 particles, Solver = MinMap Netwon, Tolerance = 1E-9

Relationship between number of iterations and size of time-step

Number of iterations increases with number of collisions

FUTURE WORK

- Determine how to alter dt such that it is adaptive
- Continue test cases and experiments
- Apply and adapt findings to fluid suspension case; applications include adaptive nanomaterials